원래 넘파이랑 판다스는 파이썬을 완전히 끝낸 다음에 포스팅 하려고 했는데 간단한 부분 - (인덱싱이랑 슬라이싱) - 은 먼저 포스팅 하도록 하겠습니다. 코딩은 iPython이 아닌 jupyter notebook에서 작성 했음을 미리 알립니다. 주피터 노트북의 경우 딱 포스트 부분에 맞게 조절하는 방법이 있는 거 같은데 왜 전 안 될 까요ㅠㅠ 아무튼 안 되면 안 되는대로, 딱히 칸을 넘어가는 부분도 없으니까 일단 포스팅 하도록 하겠습니다. 

 

1. 1차원 배열 인덱싱

import numpy as nd

In [2]:

arr = np.arange(10)

In [3]:
arr 
Out[3]:
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

arange메소드는 설명하지 않았지만 파이썬의 리스트에서 range메서드와

비슷한 역할을 합니다. 따라서 주로 초기화 하는데 저는 사용합니다. 그 외에는 거의 사용하는

적이 없는 것 같습니다.

In [4]:
arr[5] 
Out[4]:
5
In [5]:
arr[5:8] 
Out[5]:
array([5, 6, 7])

1차원 ndarray는 list와 거의 동일하게 동작합니다. 그냥 이 부분에 사용 할 수 있는 메서드가

다르다는 점만 있죠. 주로 많이 사용하는 2차원 ndarray에서 부터 주의가 많이 필요합니다.

In [6]:
arr[5:8] = 12 #색인 영역에 대입한 값이 전파된다. - 브로드캐스팅 
In [7]:
arr 
Out[7]:
array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])

위와 같이 값을 전파 시키는 것을 브로드 캐스팅이라고 합니다. 색인 영역을 잘라서 (슬라이싱) 해서 값을 대입한 후,

이 값을 : 이 후부터 전파시키기 때문에 브로드 캐스팅이라고 합니다.

In [8]:
arr[5:8] 
Out[8]:
array([12, 12, 12])
In [9]:
arr_slice = arr[5:8] 
In [10]:
arr_slice[1]=12345 
In [11]:
arr 
Out[11]:
array([    0,     1,     2,     3,     4,    12, 12345,    12,     8,            9])
In [12]:
arr_slice 
Out[12]:
array([   12, 12345,    12])

이 경우  arr_slice의 처음 값이 [5], 그리고 2번째 index인 arr_slice[1]값이 전체 arr[6]이기 때문에 12345가 대입이 됩니다. 

1차원 ndarray는 위에서 언급했다시피 list와 비슷하기 때문에 많이 공부 할 필요가 없지만 2차원 이후로부터 좀 공부를 해야하죠. 

 

이제 살펴보도록 합시다.

2. 2/3차원 배열 인덱싱 

 

arr2d = np.array([[1,2,3],[4,5,6],[7,8,9]]) 
In [15]:
arr2d[1] #2차원 배열에서 단순한 색인 값은 스칼라 값이 아니라 1차원 배열이 된다.  
Out[15]:
array([4, 5, 6])

2차원 ndarray를 생성 하였는데, [123],[4,5,6],[7,8,9] 배열을 하나 더 둘러 싸고 있는

그림입니다. 따라서 1번 index는 [4,5,6]전체 배열이 되겠죠?

In [16]:
#개별 스칼라 요소에 접근 할 때는 [][] 처럼 콤마로 구분 된 색인 리스트로 접근 해야 한다 arr2d[1][0] 
Out[16]:
4

반면에 스칼라 값 하나에 접근 하려면 어느 배열의, 어느 열에 속하는지, 지정 해야합니다.

만약에, 2행[2] 0열[0]이면 arr2d[2][0] 즉, 7을 출력하게 되겠습니다.

In [17]:
arr3d = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]) # 3차원 배열의 경우 잘 시용되지 않지만 층,행,열 로 접근 됨 
In [18]:
arr3d[0] #0층 
Out[18]:
array([[1, 2, 3],        [4, 5, 6]])

해당 배열은 0층과 1층으로 나뉘어져 있는데 맨 앞에 있는 것이 층, 그 다음이 행, 그리고 마지막이 열로서,

index로 접근 할 때도 층,행,열로 접근 하면 됩니다. 다음을 살펴 볼까요?

In [19]:
arr3d[1] #1층 
Out[19]:
array([[ 7,  8,  9],        [10, 11, 12]])

 

1층이기 때문에 위와 같이 출력해 줍니다. 반면에 2층은 존재 하지 않기 때문에 index가 존재하지 않는다고

에러 메세지를 출력하는군요. 바람직 합니다.

In [20]:
arr3d[2] #2층 없음 
 
--------------------------------------------------------------------------- IndexError                                Traceback (most recent call last) <ipython-input-20-f1c4238f3db7> in <module> ----> 1 arr3d[2] #2층 없음  IndexError: index 2 is out of bounds for axis 0 with size 2
In [ ]:
arr3d[0]=42 
In [21]:
old_values = arr3d[0].copy() 
In [22]:
arr3d[0]=42 
In [23]:
arr3d 
Out[23]:
array([[[42, 42, 42],         [42, 42, 42]],         [[ 7,  8,  9],         [10, 11, 12]]])

값을 대입 해 봤습니다. 0층에 42 값을 대입했고,

나중에 다시 값을 바꾸기 위해 old_values에 이전에 있던 값들을 복사 해 놨습니다.

In [24]:
arr3d[0]=old_values 
In [25]:
arr3d 
Out[25]:
array([[[ 1,  2,  3],         [ 4,  5,  6]],         [[ 7,  8,  9],         [10, 11, 12]]])

다시 old_values를 0층에 넣었더니 값이 원래대로 변했습니다.

In [26]:
arr3d[1,0] # -> 1층에, 0행 , 열 생략한 상태 
Out[26]:
array([7, 8, 9])

 

3차원 배열의 index가 어떻게 사용되는 지 알아보기 위해서(층,행,열)직접 코딩을 해 봤습니다.

1층, 0행 이니까, (열은 쓰지 않았음)

[7,8,9],

[10,11,12].

중에서

 

[7,8,9]열을 고를 것 같습니다.

 

예상대로 위에서는 해당 열을 골랐습니다. 그럼 이번에는 열을 골라 봅시다.

In [27]:
arr3d[1,1,1] # -> 1층, 1행, 1열 
Out[27]:
11

1층이므로, 
[7,8,9]
[10,11,12]
1행이므로
[10,11,12]
1열이므로

11을 출력 할 것입니다.

 

헷갈리신다면 다시 한 번 보시면 이해가 가실 겁니다. 별로 어렵지 않은 부분이니까요.

 

 

3. 색인과 슬라이싱 기초 / 슬라이스 색인

 

#--------------------슬라이스 색인----------------------# 
In [29]:
arr2d 
Out[29]:
array([[1, 2, 3],        [4, 5, 6],        [7, 8, 9]])
In [30]:
arr3d 
Out[30]:
array([[[ 1,  2,  3],         [ 4,  5,  6]],         [[ 7,  8,  9],         [10, 11, 12]]])
In [31]:
arr2d[:2] #2행까지 슬라이싱 
Out[31]:
array([[1, 2, 3],        [4, 5, 6]])

2차원 ndarray도 1차원 ndarray를 조금 확장 해서 생각해 보시면 됩니다.

층, 행, 열이라고 했는데, 2darray에는 층이라는 게 존재하지 않으므로 신경 쓸 필요가 없습니다.

행을 슬라이스 , 즉, 2행 이상을 모두 잘라서 보여주는 거라고 생각 하시면 됩니다.

In [32]:
arr2d[:2,1:] #2행까지 슬라이싱 하고, 1열이후로 슬라이싱 
Out[32]:
array([[2, 3],        [5, 6]])

뒤에 열이 붙긴 했지만 2행 위를 자르고, 1행 다음으로 자른 슬라이싱을 출력합니다.

위에 슬라이싱 개념을 생각해 보시고 조금 확장 해서 생각해 보시면 될 것 같습니다.

In [33]:
arr2d[1,:2] #arr2d[1,] 이렇게 사용하는 것을 정수 색인이라고 한다. 나중에 다르게 사용되는 것도 있으니 알아두도록 한다.  
Out[33]:
array([4, 5])

해당 1: 이나 :1 이 아닌 1이라고 쓰는 것을 정수 색인이라고 합니다.

나중에 판다스랑 조금 다르게 사용되는 부분이 있으므로 기억해 두시기 바랍니다.

이 부분은 정확히 1행에, [4,5,6] 2열 아래로 자르므로 [4,5]행을 출력합니다.

In [34]:
arr2d[:,:1] #:만 사용하면 전체 축(모든 행 또는 모든 열)을 의미한다. 따라서 원래 차원의 슬라이스를 얻을 수 있다.  
Out[34]:
array([[1],        [4],        [7]])

마지막으로 전체 행을 뜻하는 : 을 알아 봅시다. : 전체 행에서 , :1 1열 전을 얘기하므로,

[1]

[4]

[7]

열만 출력합니다.

 

 

넘파이에는 슬라이스 색인 이외에도 불리언 색인과 팬시 색인이라는 중요한 개념이 있는데 이 부분은 좀 더 공부를 하고 포스팅을 할 예정입니다. 그 이전까지는 파이썬에 집중 해야죠. 그럼 오늘 포스팅은 여기까지 하고 마치도록 하겠습니다. 
 
 
 
 
 
 

 

+ Recent posts